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We demonstrate a new framework for analyzing and controlling distributed sys- 
tems, by solving constrained optimization problems with an algorithm based on that 
framework. The fraaework is ar. informaticn-theoretic extension of conventiona! fun- 
rationality game theory to allow bounded rational agents. The associated optimization 
algorithm is a game in which agents control the variables of the optimization problem. 
They do this by jointly minimizing a Lagrangian of (the probability distribution of) 
their joint state. The updating of the Lagrange parameters in that Lagrangian is a 
form of automated annealing, one that focuses the multi-agent system on the optimal 
pure strategy. We present computer experiments for the k-sat constraint satisfaction 
problem and for unconstrained minimization of NK functions. 

1.1 Introduction 
Recently a new framework for analyzing and controlling distributed systems 
has been developed [6, 7, 81. This framework starts with a parameterized class 
of probability distributions, Q, across the joint state of the variables of the 
system. A Lagrangian function of q E Q, is minimized to determine a q over 
the variables of the distributed system. We consider the special case of this 
probability Lagrangian framework in which Q is the set of product distributions. 

A strength of the framework is the connections it makes to relate disciplines 
to one another. For example, it can be motivated by using information theory to 
relate bounded rational game theory to statistical physics [6, 71. In a noncooper- 
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ative game the agents are statistically independent at any stage of the game, with 
each agent i choosing its move zi by sampling its probability dstribution (mixed 
strategy) at that instant, qi(zi); the distribution of the joint-moves is a product 
distribution q(z E X) = n, qi(z,) .  Inter-agent coupling occurs indirectly, across 
time, via the updating of the { q i }  at the end of each stage. Information theory 
shows that the (bounded rational) equilibrium of the game is the q optimizing 
an associated Lagrangian L(q) .  

For some games the optimal q E Q is the minimizer of the Kullback-Leibler 
(KL) distance to a distribution p :  D(qllp) 5 E, q(z) ln(q(z)/p(z)) [l], where p 
is one of the variants of the canonical ensemble of statistical physics. In other 
words, the Lagrangian in such cases is D(q]lp) for an associated p from statistical 
physics. In particular, for Q being the set of product distributions, the bounded 
rational equilibrium of the game is a mean-field approximation to p .  

When the agents share the same utility function -G(z): the optimizer of 
C(q) is the distribution that minimizes the expected value of G, subject to any 
provided constraints and to an overall entropy value that sets the rationalities of 
the agents. Moreover, the updating of the qi at the end of each stage of the game 
can be designed to be a search process for an optimal q. For example, since q is a 
vector in a Euclidean space, the search can be done with continuous techniques 
like gradient descent or Newton’s method - even if X is a categorical, finite 
space. Under such updating, the evolution of the game serves as a distributed 
constrained optimization algorithm. Note how this contrasts with most stochas- 
tic optimization algorithms (e.g. simulated annealing). Those algorithms use 
probabi!ity distributions to help guide search for points 2 = [z~;.. ,ZN] E X 
optimizing a function G(z). In contrast, we search over distributions directly. 

In many optimization problems, particularly Constraint Satisfaction Prob- 
lems (CSPs), we want to find multiple solutions q. Multiple runs of the game 
outlined above might not find different q. Here we show how to construct a single 
game to obtain multiple distinct solutions at once. The approach is to reparam- 
eterize X so that a product distribution over the new parameters corresponds 
to  a coupled distribution across X. We consider such a reparameterization that 
results in a mixture of A4 product distributions q(z) = E, qO(m)qm(z) [4]. AS 
described below, the associated Lagrangian “pushes” the separate qm(z) apart. 

We begin in $1.2 by elaborating our Lagrangian for mixture models, and 
consider simple methods to minimize this Lagrangian in 91.3. Experimental 
validation is presented for k-satisfiability (31.4.1) and N K  (s1.4.2) problems. 

1.2 Specifying the Lagrangian 
To specify the Lagrangian we must first fkx the distribution p ( z )  we wish to 
get as close (in KL distance) to. If the objective function we wish to mini- 
mize is G(z) (Le., G is the negative of the utility shared by the bounded ra- 
tional agents) then we consider the T-parameterized Boltzmann distribution 
p ( z )  = exp(-G(z)/T) / Z ( T )  (At low T - high rationalities - this distribu- 
tion is concentrated on z having low G values.) The KL distance to this p is 



Distributed Optimization 3 

where Eq[G] cx q(z)G(z),  and S(q) - cx q(z) lnq(z) is the entropy of q.  

Since we are interested in problems with constraints, it is natural to write 
G(z) = O(z) + ~,A,c,(z) where 0 is an objective to be minimized, and the 
c, are a set of constraint functions that are required to be non-negative. The 
A, are Lagrange multipliers that are used to enforce the constraints. (In CSP's 

As mentioned above, we consider distributions of the form q(z) = cm=l qo(m)qm(z) where CmqO(m) = 1 and qm(z) = nz qn(z,). Substitut- 
ing this into (1.1) gives the mixture Lagrangian 

For product q's S(q) = E, S(qz) where S(q,) = - E,, q,(z,) hqz(z,) .  

O(z) = 0.) 

M 

L(q) = Cqo(m>Eqm[Gl - TS(q)  = 4 0 ( m ) q q m )  - TJ(q) (1.2) 
m m 

with L(qm) given by (1.1) and J ( q )  2 0 being the Jensen-Shannon (JS) distance, 

The JS term pushes the optimal qm to differ from each other. Unfortunately, it 
also couples all variables (because of the sum inside the logarithm), preventing 
a distributed solution. Thus, we replace J with another function which lo-iver- 
bounds J and which requires less communication between agents. 

A Variational Lagrangian 

Following [2], we introduce M variational functions w(rc1m) and lower-bound the 
true JS distance with 

m z  m 

Now replace M of the - In terms with the lower bound - In x 2 -vx + In v + 1 
obtained from the Legendre dual of the logarithm to find 

m z  m 

m Z m 



4 Distributed Optimization 

We optimize over w and v to maximize this lower bound. To further aid in 
distributing the algorithm we restrict the class of variational w(z1m) to products: 
w(z1m) = ni wi(q lm) .  For this choice 

where = E,, qp(zz)wz(z21m), Afi,Vl = - nd A"m, B:.m = - 
a=1 

E,, q?(z,) lnw,(x,lm), and Bmim E c&, Bp'".3 At any temperature T the 
variational Lagrangian which must be minimized with respect to g ,  w and v 
(subject to appropriate positivity and normalization constraints) is then 

L(9: w ,  v) = 9o(m)L(qrn) - TJ(% w ,  (1.4) 
m 

1.3 Minimizing the Lagrangian 
Even if x E X is a discrete quantity (as in the cases we consider here) the 
optimization variables g determined by minimizing L for a k e d  X are contin- 
uous so that gradient methods may be applied. Optimizing for the variational 
parameters w and v we find 

The dependence of L on gO(m) is particularly simple: 
C,qo(m)&(m) - T(S(q0) + I) ,  where 

Thus the mixture weights are Boltzmann distributed: 

exP( -&(m)IT) 
qo(m) = xfi exp(-&(m)/T). 

The determination of gy(zt) is similar. The relevant terms in L involving gy(zi) 
are L z qO(m) E,, &,(zi)q?(zi) - TS(qy)  where 

~ ~~ 

3Note that if uri(zilm) = l/lXil is uniform across z; then AT'm = l/lXcl and = 
Maximizing over vm we find that J(q ,  w = l/lXl, v = v') = 0. Thus, maximizing - In 

with respect to w increases the JS distance from 0. 
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The conditional expectation E*;: [Glx,] is Cz,, G(x2,  x,l)qT(x\t) where z \ ~  z 

bilities are thus determined as 

d [ 51, . . .  , ~ ~ - - 1 , ~ + l ;  .xd] and q ? ( q % )  = n,=,,,,,q,(x,). The mixture proba- 

Note that these results requires minimal communication between agents. As- 
sign a 0 agent manage the determination of q ~ ( m )  and (i,m) agents to manage 
determination of qy(zi). The A4 (i,m) agents for a fixed i communicate their 
wW,(siIm) to determine A:'*. These results along with the BY1m from each 
(i,m) agent are then forwarded to the 0 agent who forms Am>& and B"7" 
broadcasts this back to all (2, m) agents. 

Upda t ing  Lagrange Multipliers: In order to satisfy the constraints we must 
also update the Lagrange multipliers. To minimize communication between 
agents this is done in the simplest possible way - by taking the partial derivatives 
with respect to A. This gives 

X j  + X j  + ~ r x E , * [ c j ( ~ ) ]  (1.9) 

where QA is a step size and q* is the minimizer of C at the old settings of the 
multipliers. 

Es t ima t ion  of Conditional Expectations:  All update rules require esti- 
mation of conditional expectations with some variables clamped to particular 
values. These are estimated exactly if a closed form expression is available, or 
with Monte-Carlo sampling if no simple closed form exists. For the problems 
addressed here the expectations may be evaluated closed form, but Monte Carlo 
sampling can also be used [6, 81. 

1.4 Experiments 
We test the method on two different problems: a k-sat constraint satisfaction 
problem having multiple feasible solutions, and an unconstrained optimization 
of an N K  function. 

1.4.1 k-sat 
The k-sat problem is perhaps the best studied CSP [5]. The goal is to assign 
N binary variables xi values so that C clauses are satisfied. The ath clause 
involves k variables labeled by u a j  E [l, N] (for j E [l, k ] ) ,  and k binary values 
associated with each a and labeled by ua,3. The ath clause is satisfied iff ca(x) = 
v,"=, = aa,j] is true. Accordingly we write G(s, A) E XTc(s) where X and 
c are vectors of length C whose a components are A,, and c,(t) respectively. 
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Figure 1.1: (a) Evolution of Lagrangian value (solid line), expected constraint vi- 
olation (dotted line), and constraint violations of most likely configuration (dashed 
line). (b) P(G) after minimizing the Lagrangian for the first 3 multiplier settings. At 
termination P(G) = 6(G). 

- Noting that the ath clause is violated only when all x,,~,, = oa,] (with F E 
not a ) ,  the Lagrangian over product distributions can be written as C(q) = 
X'c(q) -TS(q)  where c(q) is the C-vector of expected constraint violations whose 
ath component is ca(q) 3 n3=1 qua,, (Fa,]). The only communication required to 
evaliiate G a i d  its conditional expectations is Setweer! igents appearing in the 
same clause. Typically, this communication network is sparse; for the N = 100, 
k = 3, C = 430 variable problem each agent interacts with only 6 other agents 
on average. 

For any fixed setting of the Lagrange multipliers, the Lagrangian is min- 
imized by iterating the equations (1.5) - (1.8). Rather than update a single 
agent at a time we randomly select a subset of variables no two of which impact 
each other and update the subset simultaneously. The minimization is termi- 
nated at a local minimum q*.  If all constraints are satisfied at  q* we return the 
solution z* = arg maxzq*(z) otherwise the Lagrange multipliers are updated 
according to Eq. (1.9). In the present context, this updating rule offers a num- 
ber of benefits. Firstly, those constraints which are violated most strongly have 
their penalty increased the most, and consequently, the agents involved in those 
constraints are most likely to alter their state. Secondly, the Lagrange multipli- 
ers contain a history of the constraint violations (since we keep adding to A) so 
that when the agents coordinate on their next move they are unlikely to return 
a previously violated state. Lastly, rescaling the Lagrangian by the norm of X 
gives C(q) = i T c ( q )  -TS(q)/IIXII where i = X/llXll so that the updating the La- 
grange multipliers can be seen as defining a cooling schedule where T .-+ T/l lX/l. 
The parameter QA thus governs the overall rate of cooling. We used a x  = 0.5. 

Fig. 1.1 presents results for a 100 variable k = 3 problem using a sin- 
gle mixture. The problem is satisfiable formula uf 100-01. cnf from SATLIB 

k 
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(www. s a t l i b .  o r g ) .  It was generated with the ratio of clauses to variables be- 
ing near the phase transition, and consequently has few solutions. Fig. l . l (a)  
shows the variation of the Lagrangian, the expected number of constraint vi- 
olations, and the number of constraints violated in the most probable state 
zmP = arg max, q(z) as a function of the number of iterations. The starting 
state is the maximum entropy configuration, and the starting temperature is 
T = 0.0015. The iterations at which the Lagrange multipliers are updated are 
indicated by vertical dashed lines which are clearly visible as discontinuities in 
the Lagrangian values. To show the stochastic underpinnings of the algorithm we 
plot in Fig. l . l (b)  the probability density of the number of constraint violations 
obtained as Prob(G) = E, q(z)b(G - G(z, 1)). 

Results on a larger problem with more mixtures are shown in Fig. 1.2(a). 
This is the 250 variable/l065 clause problem uf250-01. cnf from SATLIB with 
the first 50 clauses removed so that the problem has multiple solutions. The 
initial temperature is 0.1. We plot the number of constraints violated in the 
most probable state of each mixture as a function of the number of updates. 
as well as the expected number of violated constraints. After 8000 steps three 
distinct solutions have been found along with a fourth solution which violates a 
single constraint. 

Figure 1.2: (a) The solid colored curves show the number of unsatisfied clauses in of 
the best xmp configurations of each of the 4 mixtures vs iterations. The solid black 
line plots the expected number of violations, and the dashed black line shows the 
approximation to the JS distance. (b) The solid colored curves show the evolution of 
the G value of the best xmp configurations for each of 5 mixtures versus number of 
iterations. The dashed black line shows the corresponding approximation to the JS 
distance. 
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1.4.2 Minimization of N K  Functions 
The NK model defines a family of tunably difficult optimization problems [3]. 
The energy of N binary variables is defined as the average of N contribu- 
tions local to each variable z, and involving K other randomly chosen variables 
z,’ . . .  z,”: G(s) = N-’ Cz=l Ez(zz;z~, . . zr). For each of the 2K+1 local con- 
figurations E, is assigned a value drawn uniformly from 0 to 1. Fig. 1.2(b) plots 
the energy of a 5 mixture model for a multi-modal N = 300 K = 2 function. 
At termination 5 distinct configurations are obtained with the nearest pair of 
solutions having Hamming distance 12. 

N 

1.5 Conclusion 
A distributed constrained optimization framework based on probability La- 
grangians has been presented. Motivation for the framework was drawn from 
an extension of full-rationality game theory to bounded rational agents. An al- 
gorithm was developed and demonstrated on two problems. The results show 
a promising, highly distributed, off-the-shelf approach to constrained optimiza- 
tion. 
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